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1. INTRODUCTION 

UNSTEADY thermal convection of an initially isothermal fluid 
in a closed cavity has lately received considerable attention 
in the literature (see, e.g. [l-5]). Most of these papers studied 
the transient behavior of a Boussinesq fluid as a result of 
impulsively imposed thermal forcings on the boundaries ofthe 
cavity. As in common technological applications, we are 
interested in situations in which the overall Rayleigh number, 
Ra = agATh3/vK, is sufficiently large to render a boundary- 
layer-type character. Here, a is the coefficient of volumetric 
expansion, g the gravity, AT the characteristic temperature 
difference, h the height of the cavity, v the kinematic viscosity, 
and K the thermal diusivity. We are restricted to the cases for 
which the final state is ofa gravitationally stable configuration. 
The Prandtl number of the fluid, Pr = V/K, is taken to be O(1). 
The aspect ratio of the cavity is O(1). 

The requirement of having perfectly conducting walls poses 
a severe difficulty for laboratory apparatus. In order to 
understand more realistic systems, it is useful to inquire into 
the effect of finitely conducting boundaries on the front 
propagation. Recently, ref. [7] proposed a highly idealized 
model which provides a lowest-order description for the front 
propagation in a cylinder whose vertical sidewall has a finite 
thermal conductivity. The transient process is initiated by a 
uniform, impulsive increase in the ambient temperature. 
Reference [7] formulated the boundary-layer transport to 
determine the position of the propagating front that separates 
the isothermal and stratified regions. Most significantly, ref. 
[7] derived the characteristic time for the front as functions of 
the externally-controlled physical parameters. 

As was succinctly expounded in ref. Cl], the dominant 
mechanism is the pumping by the buoyant boundary layers on 
the vertical walls of the container; this induces convective 
circulations in the inviscid core. Therefore, the decisive 
thermal forcing is that on the vertical walls. Consequently, 
the temperature adjustment in the core is accomplished 
principally by the convective activities rather than by 
diffusion. 

In this note, by conducting numerical experiments we shall 
verify the front propagation predicted by Rahm’s model [7]. 
Numerical solutions to the time-dependent Navier-Stokes 
equations were acquired. The theoretical predictions will be 
compared against the numerical results using different values 
for the sidewall thermal conductance and for Ra. 

2. THE THEORETICAL MODEL 

One salient feature of the temperature evolution is the 
presenceoftheverticallypropagatingtemperaturefront [4,6]. 
Reference [4] examined an exemplary case when a uniform 
temperaturegradient AT/h is abruptly applied to the sidewall 
of a vertically-mounted cylinder (radius a, height h). During 
the transient phase, the temperature field in the core is divided 
into two regions by a horizontal front. Ahead of the front, the 
fluid remains non-stratified, retaining the uniform tempera- 
ture of the initial state; behind the front, the fluid is stratified. 
Reference [4] showed that the characteristic time for the front 
to traverse the height of the cylinder is given by the convective 
time scale Ra114N; I, NI being the Brunt-Vlis%i frequency in 
the final state, Nf = (agAT/h) “’ It was also found that the . 
propagation speed of the front is fairly constant over much of 
the cylinder depth. 

In this section, the lowest-order expressions for the front 
propagation will be briefly described. For full details, the 
reader is referred to the original paper [7]. 

Consider a quiescent incompressible fluid contained in a 
closed straight cylinder, with insulated horizontal endwalls 
at z = 0 and z = h, respectively. The radial and vertical 
coordinates are denoted by r and z. The initial state is in 
thermal equilibrium at uniform temperature TO everywhere. 
At t = 0, the temperature of the environmeni is siddenly 
raised to T. > T,, and it is maintained so thereafter. The - “. 
vertical sidewall is finitely conducting, and the Newtonian 
heat flux condition is adopted C&S] : 

g = S(T.- T) at r = a. 

To observe experimentally the front propagation described 
by ref. [4],it is necessary that the sidewall be made of a material 

Here, the thermal conductance of the sidewall is represented 

of extremely high thermal conductivity. This will ensure that 
by S. Physically, S = k&d, k, and k being the thermal 

the fluid temperature at the inner surface of the wall is 
conductivity of the sidewall material and of the fluid, 

equalized to the temperature at the outer surface of the wall. 
respectively, and d the thickness of the sidewall. As an example 

The outside temperature T, is controlled to give a desired 
for typical laboratory situations, S is approx. 1.5 cm-’ if the 

thermal forcing for the particular experiment. 
working fluid is water and the sidewall is made of glass 1 cm 
thick [S]. 
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The model is developed under the following assumptions 
[6-83 : 

(Wh2> u/Nh’) << 1, (2) 

1 << Sh << (v/Nh’)-I’*, (3) 

where N = [ae( T, - Q/h] l/2. Note that equation (2) can be 
rewritten as PrRa >> 1; thus, for Pr N O(l), it states that 
Ra >> 1. 

During the transient phase, the fluid from the isothermal 
interior is pumped into the vertical boundary layer where it is 
heated to a temperature higher than T, and travels upward 
in the boundary layer. Since the container is closed, the 
boundary-layer transport forms an upper heated region above 
the cold region at T,. The interface between these two regions 
constitutes the front. As the transient process progresses, the 
upper heated region expands and, consequently, the front 
moves downward. By evaluating the boundary-layer flux, ref. 
[7] was able to calculate the rate of expansion of the upper 
heated region; this gives the position of the propagating front. 

The traverse time for the front, T, is given as 

r = (Sah”S)/(2CF,), (4) 
where 

C = [S4gaSv3(T, - TJ1”, (5) 

and F, is a constant that is obtainable from the classical 
analysis of [9]. Equations (4) and (5) encompass S as well 
as other physical parameters, all of which are externally 
controllable. 

The position of the front, which is propagating from the top 
endwall, at time t is derived : 

2, = h( 1 -t/r)‘. (6) 

These theoretical predictions are now subject to verification 
by numerical experiments. 

3. RESULTS 

The governing time-dependent Navier-Stokes equations 
foi a Boussinesq fluid in a cylindrical frame are standard; for 
the sake of brevity, they will not be written here (see, e.g. [4]). 
The finite-difference numerical procedures due to ref. [lo] on a 
staggered mesh were amended to integrate these equations. 

Computations were performed for several sets of physical 
parameters. For all cases, a = 3 cm, h = 7 cm, v = K = 0.0083 
cm’ s-l. Results were acquired for varying values of S and 
a(T. - XI. thus Ra. For comnarisons with the theory, F, in 
e&ationi4) is computed F. = 0.437 for Pr = l.O(see (91) id is 
readily evaluated according to equations (4) and (5) for each 
parameter set of numerical runs. 

Since the actual temperature field varies continuously, the 
front is defined as the location at which the scaled temperature 
0 = (T - T,)/(T, - To) reaches some arbitrary value near zero : 
we take ~9 = 0.05 for this purpose. The results are depicted 
using the time normalized by T as the abscissa. In this way, the 
theoretical prediction, equation (6), plots a universal curve. 

Figure 1 illustrates the comparison for the position of the 
front for varying values of Ra with Sh = 10.5. It should be 
pointed out that the parameter values for these runs are 
consistent with the assumptions of the model, equations (2) 
and (3). Figure 1 demonstrates that the theory is in fair 
agreement with the numerical results over the bulk of the 
cylinder depth. This confirms that the characteristic time for 
the front to traverse the entire cylinder depth is correctly scaled 
by T given in equation (4). Poor agreement is noticed in a 
narrow region adjacent to the bottom endwall. This can be 
explained by noting that the theoretical prediction pertains to 
the front propagation in the inviscid core. No consideration 
was given in the theory to resolve the horizontal boundary 
layer on the bottom endwall. The discrepancy near the bottom 
endwall shown in Fig. 1 is attributable to this simplification in 
the theory. 

0 0.5 1 
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FIG. 1. Position of the front. Sh = 10.5. ---equation 
(6); curve (a) is for Ra = 1.4 x 106, and curve (b) for 

Ra = 1.4 x lo*. 

The effect of S is displayed in Fig. 2. We recall that S is 
embedded also in the definition of T in equations (4) and (5). 
Reasonably good agreement between the theory and the 
numerical runs for Sh = 42.0 and for Sh = 10.5 is discernible. 
However, agreement is poor for the case of Sh = 1.75. This is 
expected in view of the basic assumptions for the theory, i.e. 
equation (3). Physically speaking, in order for the theory to be 
fully applicable, the thermal conductance at the sidewall has to 
be limited, Sh K (y/Nh’)-l” ; but, at the same time, the 
sidewall thermal conductance should be strong enough to 
drive significant convective circulations, i.e. Sh >> 1. In the case 
of Sh = 1.7 in Fig. 2, convection is weak, and the adjustment 
process is influenced heavily by diffusion. 

It isalsointerestingtonotein Fig.2 that curves(b)and(c)are 
indicative of the oscillatory behavior in the transient process. 
The existence of an oscillatory approach to the steady state has 
been an issue of considerable current interest (see, e.g. [l-3]). 

4. CONCLUSION 

The numerical results are supportive of the predictions for 
the front propagation based on a highly idealized model of 
ref. [7]. The characteristic time for the front is correctly scaled 

FIG. 2. Position of the front. Ra = 10’. --- equation (6); 
curve (a) is for Sh = 42.0, curve (b) for Sh = 10.5, and curve 

(c) for Sh = 1.75. 
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with z in equation (4). The propagation speed of the front as 
described by the theory is in fair agreement with the numerical 
results. It is demonstrated that, within the range of its basic 
assumptions, the model captures the qualitative essentials of 
the propagating temperature front. 
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1. INTRODUCTION 

THE SOLUTION of practical thermal radiation problems 
depends frequently on the availability of interchange 
configuration factors. The interchange configuration factors 
for many practical geometries have been presented [ld]. T’he 
important group ofgeometries which werenot presented is the 
case of a disk radiating to a segment of a parallel concentric 
disk. The purpose of this paper is to present the results of the 
configuration factors of this group of geometries. 

2. DETERMINATION OF THE 
CONFIGURATION FACTORS 

For the determination of the configuration factors for 
radiant interchange between a disk and a segment of a parallel 
concentric disk, a schematic diagram, Fig. 1, shows the 
coordinate system for the relative position of the disk and the 
segment. 

It is well known that the configuration factors, F,,_,,, 
under the assumption that the magnitude and surface 
distribution of the radiosity is uniform over A,, can be 
expressed by 

1 
F*,- A2 = - 

AI IS 

cos 81 cos B, dA dA 
1 2 (1) 

A, A2 zrZ 

where PI and /?* are the angles formed by the normals of the 
elements dA, and dA, and the connecting line between the 
elements dA, and dA,, as shown in Fig. 1. r represents 
the length of the connecting line. The contour of the segment 
can be expressed by 

I^ ^ 

I \r d 

FIG. 1. Geometric configuration for radiant interchange 
y = *JaL-x’. (2) between a disk and a segment of a parallel concentric disk. 


